(1)

International Baccalaureate ${ }^{\circ}$
Baccalauréat International
Bachillerato Internacional

## MATHEMATICS

HIGHER LEVEL
PAPER 3 - STATISTICS AND PROBABILITY
Friday 4 November 2011 (morning)
1 hour

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 15]

The weight of tea in Supermug tea bags has a normal distribution with mean 4.2 g and standard deviation 0.15 g . The weight of tea in Megamug tea bags has a normal distribution with mean 5.6 g and standard deviation 0.17 g .
(a) Find the probability that a randomly chosen Supermug tea bag contains more than 3.9 g of tea.
(b) Find the probability that, of two randomly chosen Megamug tea bags, one contains more than 5.4 g of tea and one contains less than 5.4 g of tea.
(c) Find the probability that five randomly chosen Supermug tea bags contain a total of less than 20.5 g of tea.
(d) Find the probability that the total weight of tea in seven randomly chosen Supermug tea bags is more than the total weight in five randomly chosen Megamug tea bags.
2. [Maximum mark: 7]

Neil wants the opinion of teachers on a proposal to change the Mathematics HL curriculum. A questionnaire is sent to a large number of teachers asking for their opinions on the proposal. Of the 200 replies he receives, 160 are in favour of the proposal. Assume that these teachers are a random sample from the population.
(a) Test, at the $5 \%$ level, the hypothesis that the proportion of the population in favour of the proposal is 0.75 against the alternative that it is more than 0.75 .
(b) Find a $95 \%$ confidence interval for the proportion of the population in favour of the proposal.
3. [Maximum mark: 11]

The random variable $X$ represents the lifetime in hours of a battery. The lifetime may be assumed to be a continuous random variable $X$ with a probability density function given by $f(x)=\lambda \mathrm{e}^{-\lambda x}$, where $x \geq 0$.
(a) Name this distribution and state its mean.
(b) Find the cumulative distribution function, $F(x)$, of $X$.
(c) Find the probability that the lifetime of a particular battery is more than twice the mean.
(d) Find the median of $X$ in terms of $\lambda$.
(e) Find the probability that the lifetime of a particular battery lies between the median and the mean.
4. [Maximum mark: 16]

The random variable $X$ is believed to be modelled by $\mathrm{B}(5,0.5)$. A random sample of size 100 is taken and the observed frequencies are given in the table below.

| Value of $\boldsymbol{X}$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed frequency | 2 | 15 | $s$ | $69-s$ | 12 | 2 |

A $\chi^{2}$ goodness of fit test is carried out on these data.
(a) State the null and alternative hypotheses.
(b) Evaluate the $\chi^{2}$ statistic in the form $a s^{2}+b s+c$.
(c) Find the range of values of $s$ that would result in the null hypothesis being accepted at the $10 \%$ level.
5. [Maximum mark: 11]

The continuous random variable $U$ has a uniform distribution on $[0,1]$. The random variable $X$ is defined as follows:

$$
\begin{aligned}
& X=2 U \text { when } U \leq \frac{3}{4} \\
& X=4 U \text { when } U>\frac{3}{4} .
\end{aligned}
$$

(a) (i) Explain why $X$ cannot take values in the interval $\frac{3}{2}<X \leq 3$.
(ii) Find $\mathrm{P}\left(0 \leq X \leq \frac{3}{2}\right)$.
(iii) Find $\mathrm{P}(3<X \leq 4)$.
(b) Find the lower quartile of $X$.
(c) Find $\mathrm{E}(X)$.

